Synthesis of 11-Amino-substituted-9-methoxy-5-methyl-6H-pyrido[4,3-b]carbazoles

Isabelle Praly-Deprez, ${ }^{a}$ Christian Rivalle, ${ }^{a}$ Christiane Huel, ${ }^{\text {b }}$ Jean Belehradek, ${ }^{\text {c }}$
Claude Paoletti ${ }^{\text {c }}$ and Emile Bisagni ${ }^{\text {*, } a}$
${ }^{a}$ URA 1387 CNRS-Synthèse Organique, ${ }^{\text {b }}$ U 219 INSERM Biophysique, Institut Curie, Section de
Biologie, Bâtiments 110-112, 15 rue Georges Clémenceau, 91405 Orsay, France
${ }^{c}$ CNRS (URA 147) and INSERM (U 140), Institut Gustave Roussy, rue Camille Desmoulins, 94805 Villejuif, Cedex, France

Abstract

A route to 11 -amino-substituted- 6 H -pyrido[4,3-b]carbazoles has been studied. Thus, condensation of 2-(4-lithiopyridine-3-yl)-4,4-dimethyloxazoline with 2-acetyl-5-methoxy-1-phenylsulphonylindole led to a low yield of the expected alcohol, which upon hydrolysis gave a complex mixture. A better starting building block was 4 -acetyl- N, N-diisopropylnicotinamide obtained either from N, N -diisopropyl-4-lithionicotinamide (low yield) or from pyridine-3,4-dicarboxylic anhydride, using a 4 -step sequence. This compound was treated with 2-lithio-5-methoxy-1-phenylsulphonylindole, affording $\quad N, N$-diisopropyl-4-[1-(5-methoxy-1-phenylsulphonylindol-2-yl)-1-hydroxyethyl]nicotinamide. Hydrolysis and then reduction led to 4-[1-(5-methoxy-1-phenylsulphonylindol-2-yl)ethyl]nicotinic acid whose amides were cyclized by phosphorus trichlorideoxide. Finally, the title compounds were obtained by Raney-nickel reduction-elimination of the 6 -phenylsulphonyl protecting group.

The plant alkaloids ellipticine 1a (5,11-dimethyl-6 H -pyrido[4,-$3-b]$ carbazole), 9-methoxyellipticine $\mathbf{1 b}$ and olivacine 2 display significant antitumour activity in several experimental animal tumour systems. ${ }^{1.2}$ A derivative of 9 -hydroxyellipticine 1c, 2 -methyl-9-hydroxy elliptinium acetate 3 (elliptinium), was even commercialized for clinical use in human advanced breast cancer and other solid tumours. ${ }^{3}$

However, we have demonstrated, in various papers from our laboratory, that substitution at the 1-position of methoxyellipticine by a dialkylaminoalkylamino side chain markedly increased the biological properties in these series, ${ }^{4}$ and in the 9-aza analogues series as well. ${ }^{5.6}$

The biological results obtained with the selected compounds 4 (retelliptine) and 5 (pazelliptine), which display high antitumour activity against a large spectrum of experimental tumours in mice, ${ }^{5}$ have prompted others to undertake clinical trials with these two new drugs. ${ }^{7.8}$ Moreover, we have also described in more recent papers, the synthesis and antitumour properties of the tricyclic analogues 6 and 7.9.10 In particular, the γ-carboline derivatives $\mathbf{6 a}$ and $\mathbf{6 b}$ display potent biological activity in various animal systems, including against both experimental leukaemia and solid tumours. ${ }^{10 a}$

This prompted us to investigate the as-yet unknown series of 11 -amino-substituted- 6 H -pyrido[4,3-b]carbazole derivatives 8 , which appear to be closely related to compounds 4 and 6.

The synthesis of ellipticine derivatives has been reviewed repeatedly. ${ }^{11}$ Despite the various methods reported to date, none allowed the synthesis of such compounds as 8 . This report describes our results in this area.

At first, we tried to work out a scheme using the easily available 4,4-dimethyl-2-(pyridin-3-yl)oxazoline $9 \mathrm{a}^{12}$ and 2-acetyl-5-methoxy-1-phenylsulphonylindole $10 a$ as starting materials. Indeed, compound 10a was obtained in 60% yield from 2-lithio-5-methoxy-1-phenylsulphonylindole 10b and a large excess of acetic anhydride.

In this route, however, some difficulties were encountered: (i) when the oxazoline $9 \mathbf{9}$ was lithiated to give derivative $\mathbf{9 b}$ with

1.1 mol equiv. of N-lithio-2,2,6,6-tetramethylpiperidine (LiTMP) at $0^{\circ} \mathrm{C}$ as described, ${ }^{12}$ and the product was allowed to react with benzophenone, the product isolated was the unreported dimer 11, resulting from addition of the salt $9 b$ to its parent 9a; (ii) complete lithiation of compound $9 \mathbf{a}$ was observed at $-78^{\circ} \mathrm{C}$ during 3 h with 3 mol equiv. of LiTMP but reaction with ketone 10a led to the expected alcohol 12 with a yield limited to 40%; (iii) acidic hydrolysis of this last compound led to a mixture of lactone 13 (22% yield), ethylenic compound 14 (16.5%) and another product ($\sim 3 \%$), probably the lactone 15, which was not obtained in pure form (Scheme 1) (see Experimental section).

In view of these limitations to our original approach, we
decided to use lithio derivative $\mathbf{1 0 b}$ for the introduction of the indole part of the target structure and a new pyridine derivative as the complementary building block. 4-Acetyl- N, N-diisopropylnicotinamide seemed suitable for this purpose. It was first obtained by lithiation of N, N-diisopropylnicotinamide 17a and reaction of the resulting lithio species $\mathbf{1 7 b}$ with an excess of acetic anhydride. This reaction was performed under various conditions, but the best yield which was obtained for pure isolated ketone 16 did not exceed 15%. For satisfactory larger scale preparation of this key intermediate, we then chose pyridine-3,4-dicarboxylic anhydride 18 as a starting compound. Addition to a cooled $-78^{\circ} \mathrm{C}$ solution of methanol in dichloromethane gave 4-methoxycarbonylnicotinic acid 19 as the major product and a small amount of its isomer 20. From half-ester 19, the acid chloride 21 and N, N-diisopropyl-4methoxycarbonylnicotinamide 22 were successively obtained under the usual conditions and this latter compound was then treated with methyllithium, giving 4 -(1-hydroxy-1-methyl-ethyl)- N, N-diisopropylnicotinamide 23 as a by-product and mainly the expected ketone 16 (23% overall yield from 18) (Scheme 2).

Condensation of the lithioindole 10 b with ketone 16 was then studied under various conditions. Whereas it failed when performed in diethyl ether, it gave a 55% yield of the alcohol 24 in tetrahydrofuran (THF). In contrast to the oxazoline 12, this amide easily and cleanly led to the lactone 13 by acidic hydrolysis (80% yield). For reduction of the lactone 13 to the acid 25, several attempts were first performed using $\mathrm{Cu}^{2+}-$ activated zinc, in basic medium. According to the literature, ${ }^{13}$ these conditions usually work for similar lactones. However, in our hands the starting compound was totally recovered. The expected transformation was anyway obtained by the use of hydrochloric acid-activated zinc in boiling formic acid, ${ }^{14}$ which provided 4-[1-(5-methoxy-1-phenylsulphonylindol-2-yl)ethyl]nicotinic acid $\mathbf{2 5}$ in 62% yield. Amides $\mathbf{2 6 a - c}$ were then prepared by reaction of the carbonyldiimidazole-activated acid with the required diamines. Subsequent cyclization in boiling phosphorus trichloride oxide gave the 11 -amino-substituted- 9 -methoxy-5-methyl-6-phenylsulphonyl- $6 H$-pyrido[4,3-b]carbazoles 27, which were immediately treated by Raney-nickel in boiling ethanol to eliminate the 6 -phenylsulphonyl protecting group. The target compounds, 11-(dialkylaminoalkyl)amino)-9-methoxy-5-methyl-6 H -pyrido[4,3-b]carbazoles 28a-c were thus obtained. Finally, boron tribromide demethylation of compound 28a led to the corresponding phenolic derivative 28d (Scheme 3).

Cytotoxicity and antitumour activity of these new 6 H -

26a; $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Me})_{2}$ b; $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Me})_{2}$

28a; $R^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Me})_{2}, \mathrm{R}^{2}=\mathrm{Me}$ $R^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Me})_{2}, R^{2}=\mathrm{Me}$
c; $R^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NEt}_{2}$
d; $R^{1}=\mathrm{Ch}_{2} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Me})_{2}, R^{2}=\mathrm{H}$

Scheme 3
pyrido $[4,3-b]$ carbazole derivatives were determined under the usual conditions. ${ }^{15}$ Results are given in Table 1.

Table 1 Cytotoxicity to L1210 cultured cells (compounds 28a-d) and in vivo antitumour properties (compounds 28a and 28d) on L1210 leukaemia

	$\mathrm{ID}_{50}{ }^{a}$ $\left(10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}\right)$	$T / C \times 100,{ }^{b} \mathrm{~L} 1210 \mathrm{ip}$ $\left(\mathrm{mg} \mathrm{kg}^{-1}\right.$, single dose at day 1, ip)
$\mathbf{2 8 a}$	0.22	$100(30)$
$\mathbf{2 8 b}$	0.32	
$\mathbf{2 8 c}$	0.37	$143(30)$
$\mathbf{2 8 d}$	0.03	$267(40)[2 / 10]^{c}$
$\mathbf{4}$	0.011	

${ }^{a} \mathrm{ID}_{50}$: the micromolar concentration of drug that, when added to cultures of L1210 cells for a period of 48 h , reduced the counted cells to 50% of the control value. ${ }^{b} T / C \times 100$: antitumour activity evaluated according to the formula $T / C \times 100$; median day of survival of treated animals at a given dose/median day of survival of control mice. ${ }^{\text {c }}$ Ref. 8.[]: Long-term survivors.

When compared with reference compound 4 , it can be clearly seen that displacement of the side chain from the 1- to the 11position induces a decrease in cytotoxicity. Complementary in vivo studies were performed with compounds 28 a and 28d on L1210 leukaemia. ${ }^{16}$ They confirmed the in vitro results since
only the phenolic compound 28d displays a positive (but borderline) activity in this system.

To sum up, the successful preparation of 4-[1-(5-methoxy-1-phenylsulphonylindol-2-yl)ethyl]nicotinic acid 25 allowed us to develop a route to the as yet unknown 11-amino-substituted-9-methoxy-5-methyl-6H-pyrido[4,3-b]carbazoles (ellipticines). Biological evaluation and comparison with their 1 -aminosubstituted analogues show that displacement of the dibasic side chains from the 1 - to the 11-position leads to a loss of their antitumour properties.

Experimental

M.p.s (Kofler hot stage) are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Varian XL 100 spectrometer, with tetramethylsilane as internal standard. J-Values are given in Hz . Purification of products was followed by TLC on silica gel and alumina. Homogeneity of non-crystalline compounds was established by TLC in at least three solvents of differing polarity. Elemental analyses were performed by Service Central de Microanalyses du CNRS, 91190 Gif-sur-Yvette, France.

2-Acetyl-5-methoxy-1-phenylsulphonylindole 10a.-5-Meth-oxy-1-phenylsulphonylindole ${ }^{16}(1.148 \mathrm{~g}, 4 \mathrm{mmol})$ was dissolved in freshly distilled, dry THF ($25 \mathrm{~cm}^{3}$) in a $100 \mathrm{~cm}^{3}$, threenecked flask protected from moisture under argon. Butyllithium ($3.2 \mathrm{~cm}^{3}$ of the commercially available $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution, 5 mmol) was added to the mixture at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . The resulting solution of the lithio derivative $\mathbf{1 0 b}$ was cooled to $-10^{\circ} \mathrm{C}$ and cautiously transferred into a stirred solution of acetic anhydride ($4.4 \mathrm{~cm}^{3}, 40 \mathrm{mmol}$) in THF (10 cm^{3}) cooled at $-10{ }^{\circ} \mathrm{C}$ and maintained under argon. The mixture was allowed to reach room temperature, was then stirred for 18 h , and poured into $3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. ammonium chloride $\left(50 \mathrm{~cm}^{3}\right)$. The organic phase and diethyl ether extracts ($2 \times 40 \mathrm{~cm}^{3}$) were dried $\left(\mathrm{MgSO}_{4}\right)$. After the usual work-up, the residue was crystallized twice from ethyl acetate, to give compound 10 a as beige crystals ($0.836 \mathrm{~g}, 63.5 \%$), m.p. $161^{\circ} \mathrm{C}$ (Found: C, 61.8; H, 4.8; N, 4.2; S, 9.9. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 61.99; H, 4.59; N, 4.25; S, 9.73%).

Lithiation of the Oxazoline 9a at $0^{\circ} \mathrm{C}$ and Reaction with Benzophenone.-Production of 2-\{4-[3-(4,5-dihydro-4,4-di-methyloxazol-2-yl)-1,4-dihydropyridin-4-yl]pyridin-3-yl\}-4,5-dihydro-4,4-dimethyloxazole 11. In a $250 \mathrm{~cm}^{3}$, three-necked flask, dry THF ($50 \mathrm{~cm}^{3}$) was cooled to $0^{\circ} \mathrm{C}$ and protected from moisture. Under argon, butyllithium ($7 \mathrm{~cm}^{3}$ of the $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution, 11.2 mmol) and 2,2,6,6-tetramethylpiperidine (2.07 $\mathrm{cm}^{3}, 12.3 \mathrm{mmol}$) were successively added to the mixture at $0{ }^{\circ} \mathrm{C}$ which, after being stirred for 3 h at $0^{\circ} \mathrm{C}$, was treated with a solution of compound $9 \mathrm{a}(1.76 \mathrm{~g}, 10 \mathrm{mmol})$ in dry THF $\left(25 \mathrm{~cm}^{3}\right)$ added dropwise. The resulting mixture was left for 1 h , a solution of benzophenone ($5.46 \mathrm{~g}, 30 \mathrm{mmol}$) in THF ($25 \mathrm{~cm}^{3}$) was added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 18 h . After addition of water ($150 \mathrm{~cm}^{3}$) and extraction with diethyl ether ($4 \times 50 \mathrm{~cm}^{3}$), the combined extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was washed with boiling pentane to eliminate the starting oxazoline 9a and benzophenone. The resulting solid was recrystallized twice from toluene, to give crystals ($430 \mathrm{mg}, 24 \%$), m.p. $230^{\circ} \mathrm{C}$. This compound was the hydrogenated dimer 11 (Found: C, 68.4; $\mathrm{H}, 6.9 ; \mathrm{N}, 15.65 . \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.16 ; \mathrm{H}, 6.86 ; \mathrm{N}$, 15.90%). It was a single new component, as shown by TLC of the crude mixture; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.06$ and $1.23(2 \times 3 \mathrm{H}, 2 \mathrm{~s}), 1.49$ $(6 \mathrm{H}, \mathrm{s}), 3.84$ and $4.19\left(2 \times 2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right), 5.0\left(1 \mathrm{H}, \mathrm{dd}, 5^{\prime}-\mathrm{H}\right)$, $5.59\left(1 \mathrm{H}, \mathrm{d}, J_{4^{\prime} .5} \cdot 4.8,4^{\prime}-\mathrm{H}\right), 6.09\left(1 \mathrm{H}, \mathrm{d}, J_{6^{\prime} .5^{\prime}} 7.6,6^{\prime}-\mathrm{H}\right), 7.26$ (overlapped by $\left.\mathrm{CDCl}_{3}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.33\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}^{\prime}\right)$, $7.47(1$ $\left.\mathrm{H}, \mathrm{d}, J_{5,6} 5.2,5-\mathrm{H}\right), 8.63(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H})$ and $8.93(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$.

1-[3-(4,5-Dihydro-4,4-dimethyloxazol-2-yl)pyridin-4-yl]-1-(5-methoxy-1-phenylsulphonylindol-2-yl)ethanol 12.-Under the usual conditions, butyllithium ($18.75 \mathrm{~cm}^{3}$ of $1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution, 30 mmol) and THF ($100 \mathrm{~cm}^{3}$) were added to a solution of 2,2,6,6-tetramethylpiperidine ($5.6 \mathrm{~cm}^{3}, 33 \mathrm{mmol}$) in THF (50 cm^{3}) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 3 h at this temperature, a solution of the oxazoline $9 \mathrm{a}(2.68 \mathrm{~g}, 15.2 \mathrm{mmol})$ in THF (50 cm^{3}) was added dropwise, and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$, then cooled to $-78^{\circ} \mathrm{C}$. A sonicated suspension of 2-acetyl-5-methoxy-1-phenylsulphonylindole $\mathbf{1 0 a} \quad\left(\begin{array}{lll}5 & \mathrm{~g}, & 15.2\end{array}\right.$ mmol) in THF ($200 \mathrm{~cm}^{3}$) was added all at once. The cooling bath was removed and the mixture was stirred for 18 h at room temperature. Addition of water ($200 \mathrm{~cm}^{3}$), subsequent extraction with diethyl ether ($2 \times 100 \mathrm{~cm}^{3}$), and the usual work-up provided a residue, which was crystallized twice from ethanol to give compound 12 as crystals ($3.02 \mathrm{~g}, 39 \%$), m.p. $230^{\circ} \mathrm{C}$ (corresponding to the hemihydrate) (Found: $\mathrm{C}, 62.9 ; \mathrm{H}$, 5.3; $\mathrm{N}, 8.3 ; \mathrm{S}, 6.5 . \mathrm{C}_{27} \mathrm{H}_{2}{ }_{7} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires C, $63.02 ; \mathrm{H}$, $5.48 ; \mathrm{N}, 8.17 ; \mathrm{S}, 6.23 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.34$ and $1.38(6 \mathrm{H}, 2 \mathrm{~s}$, $\mathrm{MeOx}), 2.05$ [$3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{OH}) \mathrm{Me}], 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.06(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.88(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.99(2 \mathrm{H}, \mathrm{m}, 4-+6-\mathrm{H}), 7.45(6 \mathrm{H}, \mathrm{m}$, $\left.5 \times \mathrm{ArH}+5-\mathrm{H}_{\mathrm{pyr}}\right), 8.02\left(1 \mathrm{H}, \mathrm{d}, J_{7.6} 8.7,7-\mathrm{H}\right), 8.44\left(1 \mathrm{H}, \mathrm{d}, J_{6.5}\right.$ $\left.5.4,6-\mathrm{H}_{\mathrm{pyr}}\right)$ and $8.90\left(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}_{\mathrm{pyr}}\right)$.

1-(5-Methoxy-1-phenylsulphonylindol-2-yl)-1-methylfuro [3,4-c]pyridin- $3(1 \mathrm{H})$-one 13.-Method A. Compound 12 (1 g , 1.98 mmol) was heated in $1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid (50 cm^{3}) at reflux for 5 h . The cooled mixture was filtered and the insoluble solid was recrystallized from ethanol to provide the lactone 13 as microcrystals ($0.19 \mathrm{~g}, 22^{\%}$), m.p. $207^{\circ} \mathrm{C}$ (Found: C, 63.6; $\mathrm{H}, 4.0 ; \mathrm{N}, 6.4 ; \mathrm{S}, 7.3 . \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 63.58 ; \mathrm{H}$, 4.18; N, 6.45; S, 7.38%); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.18$ ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$), 3.8 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.07\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \cdot 7} \cdot 9, J_{6 \cdot 4} \cdot 2,6^{\prime}-\mathrm{H}\right), 7.18\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\right.$ H), $7.3\left(1 \mathrm{H}, \mathrm{d}, J_{3.7} \cdot 0.4,3^{\prime}-\mathrm{H}\right), 7.63(6 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}+7-\mathrm{H})$, $8.03\left(1 \mathrm{H}, \mathrm{d}, 7^{\prime}-\mathrm{H}\right), 8.94\left(1 \mathrm{H}, \mathrm{d}, J_{6.7} 5,6-\mathrm{H}\right)$ and $9.21\left(1 \mathrm{H}, \mathrm{d}, J_{4.7}\right.$ 1,4-H) (Note: ' numbering for indole ring).
Method B. The amide $24(1 \mathrm{~g}, 1.87 \mathrm{mmol})$ was heated in 1 mol dm^{-3} hydrochloric acid ($45 \mathrm{~cm}^{3}$) at reflux for 18 h (TLC monitoring, disappearance of starting compound 24). After cooling, the solid was collected by filtration and recrystallized from ethanol, to give crystals ($0.65 \mathrm{~g}, 80 \%$), identical in all respects with the compound obtained by method A (m.p. $207^{\circ} \mathrm{C} ; \delta_{\mathbf{H}}$).

N -(2-Hydroxy-1,1-dimethylethyl)-4-[1-(5-methoxy-1-phenyl sulphonylindol-2-yl)vinyl]nicotinamide 14.-The acid filtrate from the preparation of the preceding lactone (Method A) was evaporated to dryness under reduced pressure, the residue was taken up in water, and the mixture was neutralized to pH 7 with saturated aq. sodium hydrogen carbonate. The resulting solid was collected and chromatographed on a silica gel column. Elution with dichloromethane gave a first, homogeneous (TLC) fraction, which was collected and evaporated. The solid (77 mg) was an unresolved 2:1 mixture of the lactone 13 and (probably) its isomer 15. Hence, in addition to the signals of lactone 13 and to those corresponding to the common structures, two peaks (δ 4.90 , d and $5.32, \mathrm{t}$) characteristic of an $(\mathrm{Ar})_{2} \mathrm{CHCH}_{2} \mathrm{O}$ sequence, were observed.
With a 5% ethanol-dichloromethane mixture as eluent, a second, pure fraction was collected and evaporated. The solid was recrystallized from ethanol to give compound 14 as rosy crystals ($165 \mathrm{mg}, 16.5 \%$), m.p. $228{ }^{\circ} \mathrm{C}$ (Found: C, $64.25 ; \mathrm{H}, 5.5$; $\mathrm{N}, 8.1 ; \mathrm{S}, 6.6 . \mathrm{C}_{2}{ }_{7} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires C, 64.14; H, 5.38; $\mathrm{N}, 8.31$; $\mathrm{S}, 6.34 \%$); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.14\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right.$), 3.41 (overlapped by HOD, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.82(1 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 5.93$ and $5.97\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CH}_{2}\right), 7.02(1 \mathrm{H}, \mathrm{dd}$, $\left.6^{\prime}-\mathrm{H}\right), 7.08\left(1 \mathrm{H}, \mathrm{d}, J_{4^{\prime} \cdot 6 \cdot 3} \cdot 4^{\prime}-\mathrm{H}\right), 7.33\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right), 7.67(6 \mathrm{H}$, $\mathrm{m}, 5 \times \mathrm{ArH}+5-\mathrm{H}), 7.91\left(1 \mathrm{H}, \mathrm{d}, J_{7^{\prime}, 6^{\prime}} 9,7^{\prime}-\mathrm{H}\right), 8.55(1 \mathrm{H}, \mathrm{s}$,
$2-\mathrm{H})$ and $8.57\left(1 \mathrm{H}, \mathrm{d}, J_{6.5} 5,6-\mathrm{H}\right)$ (' numbering correspond to indole nucleus).
N, N-Diisopropylnicotinamide $\mathbf{1 7 a}$.-Nicotinic acid (10 g, 80 mmol) was stirred at room temperature in thionyl dichloride ($30 \mathrm{~cm}^{3}$, large excess) for 18 h . Excess of thionyl dichloride was evaporated off under reduced pressure and the solid residue was suspended in dichloromethane ($150 \mathrm{~cm}^{3}$). This mixture was progressively added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of diisopropylamine ($31.4 \mathrm{~cm}^{3}, 0.24 \mathrm{~mol}$) in dichloromethane ($150 \mathrm{~cm}^{3}$) and the mixture was stirred for a further 18 h at room temperature before being poured into water ($300 \mathrm{~cm}^{3}$) and extracted with dichloromethane ($3 \times 100 \mathrm{~cm}^{3}$). Usual work-up afforded an oily residue, b.p. $147-150^{\circ} \mathrm{C} / 7 \mathrm{mmHg}\left(12.6 \mathrm{~g}, 76.5^{\circ}\right.$), which progressively became solid, m.p. $99^{\circ} \mathrm{C}$ (Found: C, $69.9 ; \mathrm{H}, 8.65$; $\mathrm{N}, 13.3 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 69.87 ; \mathrm{H}, 8.80 ; \mathrm{N}, 13.58 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.34(12 \mathrm{H}, \mathrm{d}, 4 \times \mathrm{Me}), 3.66\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH} \mathrm{Me}_{2}\right)$, 7.29 (ddd, $\left.J_{5,4} 8.2, J_{5.6} 4.8, J_{5.2} 1.1,5-\mathrm{H}\right), 7.62(1 \mathrm{H}, \mathrm{dt}, 4-\mathrm{H})$, $8.55\left(1 \mathrm{H}, \mathrm{dd}, J_{2.4} 2.3,2-\mathrm{H}\right)$ and $8.58\left(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}, J_{6.4} 2.3,6-\mathrm{H}\right)$.

4-Methoxycarbonylnicotinic Acid 19.-A solution of pyridine-3,4-dicarboxylic (cinchomeronic) acid ($50 \mathrm{~g}, 0.3 \mathrm{~mol}$) in acetic anhydride ($800 \mathrm{~cm}^{3}$) was heated for 1 h at reflux and evaporated to dryness under reduced pressure. Cinchomeronic anhydride 18 was distilled off (b.p. $155-158{ }^{\circ} \mathrm{C} / 19 \mathrm{mmHg}$) and immediately dissolved in dry dichloromethane under sonication. The resulting solution was added dropwise to methanol $\left(170 \mathrm{~cm}^{3}\right)$ cooled and maintained at $-70^{\circ} \mathrm{C}$. After the mixture had been stirred for 18 h at room temperature, the solid was collected (fraction a). Excess of methanol was evaporated off and the residue was weighed and dissolved in saturated aq. sodium hydrogen carbonate (1 mol equiv.), then neutralized with 1 mol dm^{-3} hydrochloric acid. This provided a second precipitate of the expected compound 19 (fraction b). The combined solid $(\mathbf{a}+\mathbf{b})$ was recrystallized from ethyl acetate, giving pale rosy crystals ($37.3 \mathrm{~g}, 82 \%$), m.p. $180-182^{\circ} \mathrm{C}$ (Found: C, 53.2; H, 4.1; $\mathrm{N}, 7.8 . \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}$ requires $\mathrm{C}, 53.04 ; \mathrm{H}, 3.9 ; \mathrm{N}, 7.73 \%$); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.88(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $7.67\left(1 \mathrm{H}, \mathrm{d}, J_{5,6} 5,5-\mathrm{H}\right)$, $8.91(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H})$ and $9.06(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$. The literature method ${ }^{17}$ led to a mixture of compound 19 and its isomer 20, m.p. $172^{\circ} \mathrm{C}$. This last compound was also present in the crude mixture (TLC), but the process described here gave compound 19 as the major product and purification was more easy.

Methyl 3-(Diisopropylcarbamoyl)isonicotinate 22.-The acid ester $19(30 \mathrm{~g}, 0.17 \mathrm{~mol})$ was heated in thionyl dichloride (30 cm^{3}) at reflux for 1.5 h and excess of thionyl dichloride was evaporated off under reduced pressure. The solid residue (acid chloride 21) was suspended in dry dichloromethane ($200 \mathrm{~cm}^{3}$) and the mixture was progressively added to a stirred solution of freshly distilled $\left(\mathrm{CaH}_{2}\right)$ diisopropylamine $\left(70 \mathrm{~cm}^{3}, 0.53 \mathrm{~mol}\right)$ in dichloromethane ($80 \mathrm{~cm}^{3}$) cooled to $-10^{\circ} \mathrm{C}$. After the addition was complete, the cooling bath was removed and the mixture was stirred for 18 h at room temperature. The heterogeneous mixture was then poured in water ($300 \mathrm{~cm}^{3}$) and the organic layer was washed successively with aq. sodium hydrogen carbonate and water. Usual work-up provided a solid residue, which was recrystallized twice from hexane to give amido ester 22 as crystals (39.6 g, 90%), m.p. $109^{\circ} \mathrm{C}$ (Found: C, 63.5 ; H, 7.6; $\mathrm{N}, 10.8 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, 63.62; $\mathrm{H}, 7.63 ; \mathrm{N}, 10.60 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.14$ and $1.59\left[2 \times 6 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~N}\left(\mathrm{CH} \mathrm{Me} e_{2}\right)_{2}\right], 3.56$ $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{C} H \mathrm{Me}_{2}\right), 3.92(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.81\left(1 \mathrm{H}, \mathrm{dd}, J_{5.6} 5, J_{5,2}\right.$ $1,5-\mathrm{H}), 8.56(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.73(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H})$.

4-Acetyl-N,N-diisopropylnicotinamide 16.-Method A. Dry diethyl ether ($30 \mathrm{~cm}^{3}$), diisopropylamine ($3.93 \mathrm{~cm}^{3}, 30 \mathrm{mmol}$), and butyllithium ($18.7 \mathrm{~cm}^{3}$ of the usual $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution, 30 mmol) were put in a $250 \mathrm{~cm}^{3}$, three-necked flask under argon
and cooled at $0^{\circ} \mathrm{C}$. The mixture was stirred 3 h at $0^{\circ} \mathrm{C}$, cooled to $-70^{\circ} \mathrm{C}$, and a solution of N, N-diisopropylnicotinamide $\mathbf{1 7 a}$ $(2.06 \mathrm{~g}, 10 \mathrm{mmol})$ in dry diethyl ether $\left(80 \mathrm{~cm}^{3}\right)$ was added all at once. The mixture was stirred for 2 h at $-70^{\circ} \mathrm{C}$ and the lithio derivative 17 b was then added via a flexible needle, under argon pressure, into an excess of acetic anhydride $\left(15 \mathrm{~cm}^{3}\right)$ cooled to $-50^{\circ} \mathrm{C}$. After 18 h at room temperature, the mixture was poured into saturated aq. ammonium chloride $\left(150 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane; the extract was treated as usual, giving an oily residue, which was chromatographed on a silica gel column, with ethyl acetate as eluent. Three pure compounds were thus obtained, successively: (a) N, N-diisopropylacetamide, resulting from reaction of acetic anhydride with excess of diisopropylamine; (b) the starting N, N-diisopropylnicotinamide 17 a (8% recovery); (c) the expected ketone 16, which was recrystallized from hexane to provide crystals $\left(250 \mathrm{mg}, 10 \%\right.$), m.p. $94^{\circ} \mathrm{C}$ (Found: C, $67.6 ; \mathrm{H}, 8.0 ; \mathrm{N}, 11.0$. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 67.71 ; \mathrm{H}, 8.12 ; \mathrm{N}, 11.28 \%$; $\delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 1.27$ and $1.67\left[2 \times 6 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~N}\left(\mathrm{CHM} e_{2}\right)_{2}\right], 2.7(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Ac}), 3.66\left[2 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{CH}=)_{2}\right], 7.64(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{H}), 8.65(1 \mathrm{H}, \mathrm{d}$, $\left.J_{2,5} 0.8,2-\mathrm{H}\right)$ and $8.84\left(1 \mathrm{H}, \mathrm{d}, J_{6,5} 5,6-\mathrm{H}\right)$.

Method B. A solution of the amide ester $22(20 \mathrm{~g}, 76 \mathrm{mmol})$ in dry diethyl ether ($700 \mathrm{~cm}^{3}$) was cooled to $-10^{\circ} \mathrm{C}$ and methyllithium ($50 \mathrm{~cm}^{3}$ of the commercially available 1.6 mol dm^{-3} solution, 80 mmol) was added dropwise, while the temperature was kept below $-7^{\circ} \mathrm{C}$. The mixture was left for 18 h at room temperature and was then poured into saturated aq. ammonium chloride $\left(500 \mathrm{~cm}^{3}\right)$. After extraction with diethyl ether ($3 \times 150 \mathrm{~cm}^{3}$), the organic layer was treated as usual and evaporated. The residue was chromatographed on a silica gel column ($1 \mathrm{~m} \times 45 \mathrm{~mm}$) and eluted with ethyl acetate. Four main fractions were thus collected: (a) the recovered amide ester 22 ($4.31 \mathrm{~g}, 21.5 \%$ recovery); (b) 4-(1-hydroxy-1-methyl-ethyl)- N, N-diisopropylnicotinamide 23 as crystals, m.p. $120^{\circ} \mathrm{C}$ (from hexane) [total yield, after further chromatography of fraction c (see below): $1.31 \mathrm{~g}, 6.5 \%$] (Found: C, 68.2; H, 9.25; $\mathrm{N}, 10.6 . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.15 ; \mathrm{H}, 9.15 ; \mathrm{N}, 10.60 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.25,1.27,1.64$ and $1.65[4 \times 3 \mathrm{H}, 4 \mathrm{~d}, J 6.8$, $\left.\left.\mathrm{N}(\mathrm{CHMe})_{2}\right)_{2}\right], 1.64$ and $1.73\left(2 \times 3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CMe} 2_{2} \mathrm{OH}\right), 3.59$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.72\left[2 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH} \mathrm{Me}_{2}\right)_{2}\right], 7.31(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{H})$, $8.42\left(1 \mathrm{H}, \mathrm{d}, J_{2.5} 0.5,2-\mathrm{H}\right)$ and $8.6\left(1 \mathrm{H}, \mathrm{d}, J_{6.5} 5.5,6-\mathrm{H}\right)$; (c) An unresolved mixture of the preceding compound 23 and ketone 16, which was submitted to further chromatography, under the same conditions; (d) the pure ketone 16. After the further chromatography, the total yield of pure compound 16 was 9.3 g (49.5%). It was completely identical with the compound obtained by method A (m.p., δ_{H}).

4-[1-Hydroxy-1-(5-methoxy-1-phenylsulphonylindol-2-yl)-ethyl]-N,N-diisopropylnicotinamide 24.-To a solution of 5-methoxy-1-phenylsulphonyl indole ($2.31 \mathrm{~g}, 8.07 \mathrm{mmol}$) in dry THF ($100 \mathrm{~cm}^{3}$) was added butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution; $\left.5.05 \mathrm{~cm}^{3}, 8.08 \mathrm{mmol}\right)$ all at once. The mixture was stirred for 2 h at room temperature, then cooled to $-13{ }^{\circ} \mathrm{C}$, and a solution of 4-acetyl- N, N-diisopropylnicotinamide $16(2 \mathrm{~g}, 8.06$ mmol) in THF ($80 \mathrm{~cm}^{3}$) was added dropwise. After being stirred for 18 h at room temperature the mixture was poured into saturated aq. ammonium chloride $\left(200 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 60 \mathrm{~cm}^{3}\right)$. The combined extract was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated, to give a residue, which was taken up in ethyl acetate. Recrystallization from this solvent gave compound 24 as crystals $(2.67 \mathrm{~g}, 62 \%)$, m.p. $253{ }^{\circ} \mathrm{C}$ (Found: C, 64.9; $\mathrm{H}, 6.1 ; \mathrm{N}, 7.9 ; \mathrm{S}, 6.2 . \mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 65.03 ; \mathrm{H}, 6.21 ; \mathrm{N}, 7.84 ; \mathrm{S}, 5.98 \%$) $\delta_{\mathrm{H}}[2 \mathrm{D}, 400$ $\left.\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)\right]$ two rotamers $(\mathrm{A}+\mathrm{B})$, in the ratio 3:1, were observed, for indole nucleus, Ar for benzene ring of $\mathrm{SO}_{2} \mathrm{Ph}$). For $\mathrm{A}: 0.98,1.10,1.50$ and 1.52 $\left[4 \times 3 \mathrm{H}, 4 \mathrm{~d},\left(\mathrm{Me}_{2} \mathrm{CH}\right)_{2}\right], 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCOH}), 3.55$ and
$4.04\left[2 \times 1 \mathrm{H}, 2 \mathrm{~m},\left(\mathrm{CH} \mathrm{Me}_{2}\right)_{2}\right], 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.14(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}), 6.73\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 5.2,5-\mathrm{H}\right), 6.93\left(1 \mathrm{H}, \mathrm{dd}, J_{6} \cdot 7 \cdot 9.2, J_{6 \cdot 4}\right.$ $\left.2.5,6^{\prime}-\mathrm{H}\right), 7.13\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right), 7.19\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{H}\right), 7.6(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ $3-, 4-, 5-\mathrm{H}), 7.78\left(1 \mathrm{H}, \mathrm{d}, 7^{\prime}-\mathrm{H}\right), 8(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} 2-, 6-\mathrm{H}), 8.32(1 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{H})$ and $8.39(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H})$. For B: $1.03,1.10$ and $1.37[2 \times$ $\left.3 \mathrm{H}+6 \mathrm{H}, 3 \mathrm{~d},\left(\mathrm{Me}_{2} \mathrm{CH}\right)_{2}\right], 2.05(3 \mathrm{H}, \mathrm{s}, M e \mathrm{COH}), 3.23$ and $3.52\left[2 \mathrm{H}, 2 \mathrm{~m},(\mathrm{CHMe})_{2}\right], 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.10(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}), 6.80\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right), 6.98\left(1 \mathrm{H}, \mathrm{dd}, J_{6} \cdot 7 \cdot 9.2, J_{6^{\prime}, 4} \cdot 2.6\right.$, $\left.6^{\prime}-\mathrm{H}\right), 7.11\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{H}\right), 7.6(3 \mathrm{H}, \mathrm{m}, \operatorname{Ar} 3-, 4-, 5-\mathrm{H}), 8(3 \mathrm{H}$, $\mathrm{m}, \operatorname{Ar} 2-, 6-\mathrm{H}+5-\mathrm{H}), 8.26(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.59(1 \mathrm{H}, \mathrm{d}$, $\left.J_{6.5} 5.4,6-H\right)$.

4-[1-(5-Methoxy-1-phenylsulphonylindol-2-yl)ethyl]nicotinic Acid 25.-A mixture of the lactone $13(4 \mathrm{~g}, 9,2 \mathrm{mmol})$, activated zinc powder ${ }^{14}(8 \mathrm{~g})$, formic acid $\left(54 \mathrm{~cm}^{3}\right)$, and water $\left(14 \mathrm{~cm}^{3}\right)$ was heated at reflux for 12 h and evaporated to dryness. The solid residue was taken up in $1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid (80 cm^{3}) and the mixture was stirred for 4 h . The resulting solid was collected and treated with ammonia ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 300 \mathrm{~cm}^{3}$). Traces of insoluble material were filtered off and the filtrate was acidified with conc. hydrochloric acid to provide a solid, which was collected and recrystallized from ethanol to give compound 25 as crystals ($2.48 \mathrm{~g}, 62 \%$), m.p. $>265^{\circ} \mathrm{C}$ (Found: C, 63.0; H, 4.8; $\mathrm{N}, 6.4 ; \mathrm{S}, 7.2 . \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 63.29 ; \mathrm{H}, 4.62 ; \mathrm{N}$, $6.42 ; \mathrm{S}, 7.35 \%) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.58(3 \mathrm{H}, \mathrm{d}, \mathrm{MeCH}), 3.82$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.76\left(1 \mathrm{H}, \mathrm{q}, J_{\text {CHMe }} 7, \mathrm{CHMe}\right), 6.96(2 \mathrm{H}, \mathrm{m}$, $\left.5-+6^{\prime}-\mathrm{H}\right), 7\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right), 7.17\left(1 \mathrm{H}, \mathrm{d}, J_{4^{\prime}, 6} 2.5,4^{\prime}-\mathrm{H}\right), 7.57$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.93\left(1 \mathrm{H}, \mathrm{d}, J_{7^{\prime} .6} .9,7^{\prime}-\mathrm{H}\right), 8.49\left(1 \mathrm{H}, \mathrm{d}, J_{6.5} 5.5\right.$, $6-\mathrm{H})$ and $9.01(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$.

N-[3-(Dimethylamino)propyl]-4-[1-(5-methoxy-1-phenyl sulphonylindol-2-yl)ethyl] nicotinamide 26b.-A mixture of the preceding acid 25 ($200 \mathrm{mg}, 0.45 \mathrm{mmol}$), dimethylformamide (DMF) $\left(2 \mathrm{~cm}^{3}\right.$), and N, N^{\prime}-carbonyldiimidazole ($149 \mathrm{mg}, 0.9$ mmol) was stirred for 10 min at room temperature. To the resulting homogeneous solution was added 3-(dimethylamino)propylamine $\left(0.23 \mathrm{~cm}^{3}, 1.8 \mathrm{mmol}\right)$ all at once. After the mixture had been stirred for 15 min , evaporation to dryness under reduced pressure $(0.1 \mathrm{mmHg})$ provided an oily residue, which was taken up in water ($15 \mathrm{~cm}^{3}$) and extracted with dichloromethane $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water to neutrality (pH 7), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was recrystallized from toluene to afford compound $\mathbf{2 6 b}$ as crystals ($131 \mathrm{mg}, 55 \%$), m.p. $167^{\circ} \mathrm{C}$ (Found: C, 64.75; $\mathrm{H}, 6.1 ; \mathrm{N}, 10.9 ; \mathrm{S}, 6.3 . \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 64.59 ; \mathrm{H}, 6.20 ; \mathrm{N}, 10.76 ; \mathrm{S}, 6.16 \%$); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.64(3 \mathrm{H}, \mathrm{d}$, $M e \mathrm{CH}), 1.71\left(2 \mathrm{H}, \mathrm{m}, \beta-\mathrm{H}_{2}\right), 2.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.26(2 \mathrm{H}, \mathrm{m}, \gamma-$ H_{2}), 3.3 (overlapped by HOD signal, $\alpha-\mathrm{H}_{2}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.22(1 \mathrm{H}, \mathrm{q}, \mathrm{C} H \mathrm{Me}), 6.85\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right), 6.89\left(1 \mathrm{H}, \mathrm{d}, J_{5,6} 6,5-\mathrm{H}\right)$, $6.90\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime}, 7} \cdot 9, J_{6^{\prime} \cdot 4} \cdot 3,6^{\prime}-\mathrm{H}\right), 7.11\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{H}\right), 7.56(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 7.88\left(1 \mathrm{H}, \mathrm{d}, 7^{\prime}-\mathrm{H}\right), 8.42(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}), 8.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $8.61(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$.

Amides 26a and 26c were prepared similarly. However, despite attempts in various solvents, they could not be crystallized. So, after ${ }^{1} \mathrm{H}$ NMR control, they were used as crude substrates ($70-80 \%$ yields) in the subsequent transformations.

11-\{[2-(Dimethylamino)ethyl]amino\}-9-methoxy-5-methyl-6H-pyrido[4,3-b] carbazole 28a and Analogues 28b and 28c.The required amide 26 (200 mg) was dissolved in phosphorus trichloride oxide $\left(10 \mathrm{~cm}^{3}\right)$ and the solution was heated for 2 h at reflux. The precipitate which soon appeared dissolved after this time. Excess of phosphorus trichloride oxide was evaporated off and cold water ($50 \mathrm{~cm}^{3}$) was added, giving a homogeneous solution, which was made alkaline with aq. sodium hydroxide. The pasty precipitate was extracted with dichloromethane ($5 \times 20 \mathrm{~cm}^{3}$) and the extract was washed

Table 2 Physical data for compounds 28

${ }^{a}$ Overall yield from the acid 25 . ${ }^{b}$ Field desorption, chemical ionisation $\left(\mathrm{NH}_{3}\right)$.
with water. Evaporation of the solvent gave a pasty solid residue of intermediate compound 27 for which all attempts at crystallization in various solvents failed.
Compound 27 was taken up in ethanol ($30 \mathrm{~cm}^{3}$), W-2 commercially available Raney nickel (2 g) was added, and the mixture was heated at reflux until disappearance of compound 27 (TLC monitoring, alumina plates; $5 \% \mathrm{EtOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$; $10-15 \mathrm{~h}$). The mixture was filtered, the solid was washed with boiling ethanol ($5 \times 40 \mathrm{~cm}^{3}$), and the filtrate was evaporated to dryness. The residue was recrystallized from cyclohexane (large volume required) or toluene to provide the expected tetracyclic compounds (28, Table 2). As mentioned in the formula entry in Table 2, these compounds are always associated with water of crystallization but toluene was also retained by the solid when this solvent was used for recrystallization. As can be seen from Table 2, however, ${ }^{1}$ H NMR and mass-spectra are fully in agreement with the reported structures.

11-\{[12-(Dimethylamino)ethyl]amino\}-5-methyl-6H-pyrido-[4,3-b]carbazol-9-ol 28d.-Compound 28a ($200 \mathrm{mg}, 0.64 \mathrm{mmol}$) was dissolved in dry dichloromethane ($30 \mathrm{~cm}^{3}$) under nitrogen and the solution was cooled to $-78^{\circ} \mathrm{C}$. A $1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of boron tribromide ($5 \mathrm{~cm}^{3}, 5 \mathrm{mmol}$) was added dropwise and the mixture was allowed to reach room temperature overnight, while being continuously stirred. It was then poured into water ($50 \mathrm{~cm}^{3}$), stirred for 1 h , and made alkaline with conc. ammonia, to afford a pasty precipitate, which was collected when it had solidified, and was dried under reduced pressure overnight and recrystallized from toluene to give pale yellow crystals (Table 2).

Acknowledgements

Financial support of the Association pour la Recherche sur le cancer (ARC) is gratefully acknowledged. We would also like to thank the 'Ligue Nationale Française Contre le Cancer' for a grant for graduate student research support (I. P. D.).

References

1 C. Paoletti, J. B. Le Pecq, N. Dat Xuong, P. Juret, H. Garnier, J. L. Amiel and J. Rouesse, Recent Results Cancer Res., 1980, 74, 107.

2 N. Nagasawa, M. Homma, H. Namiti and K. Niki, Eur. J. Cancer Clin. Oncol., 1984, 20, 273.
3 P. Juret, A. Tanguy, A. Girard, J. Y. Le Talaer, J. S. Abbatucci, N. Dat Xuong, J. B. Le Pecq and C. Paoletti, Eur. J. Cancer, 1978, 14, 205; A. Brugaloras, M. Garcia, R. de Jager, M. Mallarme and A. Clarysse, Proc. Am. Assoc. Cancer Res., 1979, 20, 310; A. Clarysse, A. Brugaloras, P. Siegenthaler, R. de Jager, F. Cavalli, P. Alberto and H. Hansen, Proc. Am. Assoc. Cancer Res., 1980, 21, 348; N. Van-Bac, C. Moisand, A. Gouyette, G. Muzard, N. Dat Xuong, J. B. Le Pecq and C. Paoletti, Cancer Treat. Rep., 1980, 64, 879; P. Dodion, M. Rozencweig, C. Nicaise, M. Piccart, E. Cumps, N. Crespeigne, D. Kisnerand Y. Kerio, Eur. J. Cancer Clin. Oncol., 1982, 18, 519.
4 C. Ducrocq, F. Wendling, M. Tourbez-Perrin, C. Rivalle, P. Tambourin, F. Pochon, E. Bisagni and J.-C. Chermann, J. Med. Chem., 1980, 23, 1212.
5 C. Lidereau, J. C. Chermann, J. Gruest, L. Montagnier, C. Ducrocq, C. Rivalle and E. Bisagni, Bull. Cancer, 1980, 67, 1.

6 C. Rivalle, F. Wendling, P. Tambourin, J.-M. Lhoste, E. Bisagni and J. C. Chermann, J. Med. Chem., 1983, 26, 181.
7 M. Marty, C. Jasmin, P. Pouillart, C. Gisselbrecht, G. Gouvenia and H. Magdelénat, Presented at the Annual Meeting of the Society of Clinical Oncology, 1981, C-108.
8 C. Atassi, O. Pépin, P. Dumont and P. Gros, Presented at $6{ }^{\circ} \mathrm{NCI}-$ EORTC Symposium on New Drugs in Cancer Therapy, Amsterdam, 7-10 May, 1989.
9 C. H. Nguyen and E. Bisagni, Tetrahedron, 1987, 43, 535; E. Bisagni and C. H. Nguyen, Tetrahedron, 1986, 42, 2311; C. H. Nguyen and E. Bisagni, Tetrahedron, 1986, 42, 2303.

10 (a) E. Bisagni, C. H. Nguyen, A. Pierré, O. Pépin, P. De Cointet and P. Gros, J. Med. Chem., 1988, 31, 398; (b) C. H. Nguyen, E. Bisagni, O. Pépin, A. Pierré and P. De Cointet, J. Med. Chem., 1987, 30, 1642.
11 M. Sainsbury, Synthesis, 1987, 437; M. J. Hewlins, A. M. OliveiraCampos and P. V. Shannon, Synthesis, 1984, 289; G. W. Gribble and M. G. Saulnier, Heterocycles, 1985, 23, 1277; V. K. Kansal and P. Potier, Tetrahedron, 1986, 42, 2389.

12 A. I. Meyers and R. A. Gabel, J. Org. Chem., 1982, 47, 2633.
13 M. S. Newman and S. Veeraghavan, J. Org. Chem., 1983, 48, 3246; M. S. Newman, J. Org. Chem., 1983, 48, 3249.

15 R. I. Geran, N. H. Greenberg, M. M. MacDonald, A. M. Schumacher and B.-J. Abott, Cancer Chemotherapy Report, Bethesda, 3rd edn., Part 3, 1972, p. 1.
16 R. Besselievre, Ph.D. Thesis, University of Paris-Sud, 1977.

Paper 1/02643G
Received 3rd June 1991
Accepted 23rd July 1991

